6. Implications of a Flood
A global flood would have produce evidence contrary to the evidence we see.
How do you explain the relative ages of mountains? For example, why weren't the Sierra Nevadas eroded as much as the Appalachians during the Flood?
Why is there no evidence of a flood in ice core series? Ice cores from Greenland have been dated back more than 40,000 years by counting annual layers. [Johnsen et al, 1992,; Alley et al, 1993] A worldwide flood would be expected to leave a layer of sediments, noticeable changes in salinity and oxygen isotope ratios, fractures from buoyancy and thermal stresses, a hiatus in trapped air bubbles, and probably other evidence. Why doesn't such evidence show up?
How are the polar ice caps even possible? Such a mass of water as the Flood would have provided sufficient buoyancy to float the polar caps off their beds and break them up. They wouldn't regrow quickly. In fact, the Greenland ice cap would not regrow under modern (last 10 ky) climatic conditions.
Why did the Flood not leave traces on the sea floors? A year long flood should be recognizable in sea bottom cores by (1) an uncharacteristic amount of terrestrial detritus, (2) different grain size distributions in the sediment, (3) a shift in oxygen isotope ratios (rain has a different isotopic composition from seawater), (4) a massive extinction, and (n) other characters. Why do none of these show up?
Why is there no evidence of a flood in tree ring dating? Tree ring records go back more than 10,000 years, with no evidence of a catastrophe during that time. [Becker & Kromer, 1993; Becker et al, 1991; Stuiver et al, 1986]
References
Alley, R. B., D. A. Meese, C. A. Shuman, A. J. Gow, K.C. Taylor, P. M. Grootes, J. W. C. White, M. Ram, E. W. Waddington, P. A. Mayewski, & G. A. Zielinski, 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362: 527-529.
Becker, B. & Kromer, B., 1993. The continental tree-ring record - absolute chronology, C-14 calibration and climatic-change at 11 KA. Palaeogeography Palaeoclimatology Palaeoecology, 103 (1-2): 67-71.
Becker, B., Kromer, B. & Trimborn, P., 1991. A stable-isotope tree-ring timescale of the late glacial Holocene boundary. Nature 353 (6345): 647-649.
Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrap, C. U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, & J. P. Steffensen, 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311-313.
Stuiver, Minze, et al, 1986. Radiocarbon age calibration back to 13,300 years BP and the 14 C age matching of the German Oak and US bristlecone pine chronologies. IN: Calibration issue / Stuiver, Minze, et al., Radiocarbon 28(2B): 969-979.